2022-03-04 16:48:48 公務(wù)員考試網(wǎng) 文章來源:山東分院
數(shù)量關(guān)系中的最值問題分為三類題目,分別為最不利構(gòu)造、數(shù)列構(gòu)造、多集合反向構(gòu)造問題,其中,數(shù)列構(gòu)造題型特征明顯,解題方法技巧性較強(qiáng),方法運(yùn)用得當(dāng)?shù)脑挘梢暂^快速的計(jì)算出答案,本次便帶領(lǐng)大家揭開數(shù)列構(gòu)造的神秘面紗。
已知有23個(gè)蘋果,要分給5個(gè)小朋友,每個(gè)小朋友至少分一個(gè),且分得的蘋果數(shù)互不相同,問:分的蘋果最多的人最少分多少個(gè)?
一、題型特征
當(dāng)問題出現(xiàn)“最多(少)…最少(多)…”或“排名第…最多(少)……”時(shí),便為數(shù)列構(gòu)造的題目
二、解題方法:
第一步,排序:按每人分得蘋果數(shù)從左到右依次減少排列五個(gè)順序;
第二步,定位:要求誰就設(shè)誰為x,因此設(shè)最左邊第一個(gè)位置的小朋友分得的蘋果為x;
第三步,構(gòu)造數(shù)列:根據(jù)題干要求,要使最多的人蘋果數(shù)最少,蘋果總數(shù)不變,說明其他人分得的蘋果要盡可能多,又因?yàn)槊咳朔值玫奶O果數(shù)各不相同,因此從左邊第一人往右分得的蘋果數(shù)因此為:x、x-1、x-2、x-3、x-4
第四步,求和:根據(jù)蘋果總數(shù)不變,x+(x-1)+(x-2)+(x-3)+(x-4)=23,解得x=6.6,最少分6.6,所以取整數(shù)為7個(gè)蘋果
三、真題演練
某高校計(jì)劃招聘81名博士,擬分配到13個(gè)不同的院系,假定院系A(chǔ)分得的博士人數(shù)比其他院系都多,那么院系A(chǔ)分得的博士人數(shù)至少有多少名?
A.6
B.7
C.8
D.9
解析:第一步,本題考查最值問題中的數(shù)列構(gòu)造問題。 第二步,總共招聘81名博士,要想院系A(chǔ)分得的博士數(shù)最少,則應(yīng)構(gòu)造其余院系分得的博士數(shù)盡可能多。設(shè)院系A(chǔ)分得博士x名,那么其余12個(gè)院系最多均
有x-1名,可列方程:x+(x-1)×12=81,解得x≈7.2,那么院系A(chǔ)分得的博士至少有8名。
因此,選擇C選項(xiàng)。
這就是數(shù)列問題,做好題型識(shí)別,在了解原理的基礎(chǔ)上,記住做題方法,再輔以該類題目的練習(xí),這類題目便能在考場(chǎng)上輕松拿分。
相關(guān)內(nèi)容推薦:
貼心考公客服
貼心專屬客服
報(bào)名條件?
崗位選擇?
筆試科目?
面試方式?
......